Biomarker-Guided Prediction of Pregnancy Viability, Current Evidence and Emerging Insights: A Narrative Review
DOI:
https://doi.org/10.54133/ajms.v9i1.2300Keywords:
Biomarkers, Viable Pregnancy, Cytokine, Adipokine, Emerging Non-Classical BiomarkersAbstract
Early detection of pregnancy viability is crucial for timely intervention and optimal maternal-fetal outcomes. Biomarkers represent a promising advancement for improving diagnostic accuracy and customized patient management. Four databases were searched based on MeSH keywords; extracted data were synthesized and categorized into cytokines, adipokines, and emerging non-classical biomarkers. For each, the mechanism of action, advantages, and limitations were discussed. Cytokines were key players in immune modulation and facilitating early embryonic growth. Adipokines mirrored the maternal metabolic-inflammatory cross-talk in early pregnancy. The non-classical biomarkers offered enhanced sensitivity by capturing subtle molecular changes that surpass those observed in clinical signs. Biomarkers give the advantage of non-invasive risk stratification and personalized monitoring; however, they are hindered by a lack of standardization and limited integration in practice. Integrated multiomic research and leveraging machine learning are recommended as future research areas to enhance diagnostic precision and clinical translation from laboratory insights into clinical practice.
Downloads
References
Yang X, Wang R, Zhang W, Yang Y, Wang F. Predicting risk of the subsequent early pregnancy loss in women with recurrent pregnancy loss based on preconception data. BMC Womens Health. 2024;24(1):381. doi: 10.1186/s12905-024-03206-9. DOI: https://doi.org/10.1186/s12905-024-03206-9
Clement EG, Horvath S, McAllister A, Koelper NC, Sammel MD, Schreiber CA. The Language of First-Trimester Nonviable Pregnancy. Obstet Gynecol. 2019;133(1):149–154. doi: 10.1097/AOG.0000000000002997. DOI: https://doi.org/10.1097/AOG.0000000000002997
Obstetric Care Consensus No. 6: Periviable Birth. Obstet Gynecol. 2017;130(4):e187–199. doi: 10.1097/AOG.0000000000002352. DOI: https://doi.org/10.1097/AOG.0000000000002352
Murugan VA, Murphy BO, Dupuis C, Goldstein A, Kim YH. Role of ultrasound in the evaluation of first-trimester pregnancies in the acute setting. Ultrasonography. 2020;39(2):178–189. doi: 10.14366/usg.19043. DOI: https://doi.org/10.14366/usg.19043
Abdulqader S, Nori W, Akram N, Al-Kinani M. Radiological modalities for the assessment of fetal growth restriction: A comprehensive review. AL-Kindy Coll Med J. 2024;20(1):4-13. doi: 10.47723/nz221421. DOI: https://doi.org/10.47723/nz221421
Dutta S, Sengupta P. Yoga escalates female reproductive health during pregnancy. J Pregnancy Reprod. 2017;1(3). doi: 10.15761/JPR.1000114 DOI: https://doi.org/10.15761/JPR.1000114
Wu HM, Chen LH, Hsu LT, Lai CH. Immune tolerance of embryo implantation and pregnancy: The role of human decidual stromal cell- and embryonic-derived extracellular vesicles. Int J Mol Sci. 2022;23(21):13382. doi: 10.3390/ijms232113382. DOI: https://doi.org/10.3390/ijms232113382
Dutta S, Sengupta P, Liew FF. Cytokine landscapes of pregnancy: mapping gestational immune phases. Gynecol Obstet Clin Med. 2024;4(1):e000011. doi: 10.1136/gocm-2024-000011.
Garmendia JV, De Sanctis CV, Hajdúch M, De Sanctis JB. Exploring the Immunological Aspects and Treatments of Recurrent Pregnancy Loss and Recurrent Implantation Failure. Int J Mol Sci. 2025;26(3):1295. doi: 10.3390/ijms26031295. DOI: https://doi.org/10.3390/ijms26031295
Rizvi M. Reproductive autonomy in immunological intervention: Ethical boundaries in maternal-fetal immune therapy. J Health Ethics. 2025;21(1). doi: 10.18785/jhe.2101.06. DOI: https://doi.org/10.18785/jhe.2101.06
Yu HR, Huang LH, Li SC. Roles of microRNA in the immature immune system of neonates. Cancer Lett. 2018;433:99–106. doi: 10.1016/j.canlet.2018.06.014. DOI: https://doi.org/10.1016/j.canlet.2018.06.014
Vilotić A, Nacka-Aleksić M, Pirković A, Bojić-Trbojević Ž, Dekanski D, Jovanović Krivokuća M. IL-6 and IL-8: An overview of their roles in healthy and pathological pregnancies. Int J Mol Sci. 2022;23(23):14574. doi: 10.3390/ijms232314574. DOI: https://doi.org/10.3390/ijms232314574
Wang W, Sung N, Gilman-Sachs A, Kwak-Kim J. T helper (Th) cell profiles in pregnancy and recurrent pregnancy losses: Th1/Th2/Th9/Th17/Th22/Tfh cells. Front Immunol. 2020;11. doi: 10.3389/fimmu.2020.02025. DOI: https://doi.org/10.3389/fimmu.2020.02025
Duttaroy AK, Basak S. Maternal fatty acid metabolism in pregnancy and its consequences in the feto-placental development. Front Physiol. 2022;12. doi: 10.3389/fphys.2021.787848. DOI: https://doi.org/10.3389/fphys.2021.787848
Mączka K, Stasiak O, Przybysz P, Grymowicz M, Smolarczyk R. The impact of the endocrine and immunological function of adipose tissue on reproduction in women with oObesity. Int J Mol Sci. 2024;25(17):9391. doi: 10.3390/ijms25179391. DOI: https://doi.org/10.3390/ijms25179391
Al-Mansoori L, Al-Jaber H, Prince MS, Elrayess MA. Role of inflammatory cytokines, growth factors and adipokines in adipogenesis and insulin resistance. Inflammation. 2022;45(1):31–44. doi: 10.1007/s10753-021-01559-z. DOI: https://doi.org/10.1007/s10753-021-01559-z
Gutaj P, Sibiak R, Jankowski M, Awdi K, Bryl R, Mozdziak P, et al. The Role of the adipokines in the most common gestational complications. Int J Mol Sci. 2020;21(24):9408. doi: 10.3390/ijms21249408. DOI: https://doi.org/10.3390/ijms21249408
Sun J, Deng G, Ruan X, Chen S, Liao H, Liu X, et al. Exosomal MicroRNAs in Serum as Potential Biomarkers for Ectopic Pregnancy. Biomed Res Int. 2020;2020(1). doi: 10.1155/2020/3521859. DOI: https://doi.org/10.1155/2020/3521859
Cui S, Zhang J, Li J, Wu H, Zhang H, Yu Q, et al. Circulating microRNAs from serum exosomes as potential biomarkers in patients with spontaneous abortion. Am J Transl Res. 2021;13(5):4197–210. PMID: 34150008.
Jafari-Gharabaghlou D, Vaghari-Tabari M, Oghbaei H, Lotz L, Zarezadeh R, Rastgar Rezaei Y, et al. Role of adipokines in embryo implantation. Endocr Connect. 2021;10(11):R267–278. doi: 10.1530/EC-21-0288. DOI: https://doi.org/10.1530/EC-21-0288
Ormindean CM, Ciortea R, Măluțan AM, Bucuri CE, Diculescu DM, Iuhas CI, et al. Adipokines as potential biomarkers in pregnancy: A naturalistic study of adipokines in pregnant women and newborns. Biomolecules. 2025;15(5):607. doi: 10.3390/biom15050607. DOI: https://doi.org/10.3390/biom15050607
Hill CJ, Phelan MM, Dutton PJ, Busuulwa P, Maclean A, Davison AS, et al. Diagnostic utility of clinicodemographic, biochemical and metabolite variables to identify viable pregnancies in a symptomatic cohort during early gestation. Sci Rep. 2024;14(1):11172. doi: 10.1038/s41598-024-61690-3. DOI: https://doi.org/10.1038/s41598-024-61690-3
Ding J, Maxwell A, Adzibolosu N, Hu A, You Y, Liao A, et al. Mechanisms of immune regulation by the placenta: Role of type I interferon and interferon‐stimulated genes signaling during pregnancy. Immunol Rev. 2022;308(1):9–24. doi: 10.1111/imr.13077. DOI: https://doi.org/10.1111/imr.13077
Liu C, Chu D, Kalantar‐Zadeh K, George J, Young HA, Liu G. Cytokines: From clinical significance to quantification. Adv Sci. 2021;8(15). doi: 10.1002/advs.202004433. DOI: https://doi.org/10.1002/advs.202004433
Burns C, Hall ST, Smith R, Blackwell C. Cytokine levels in late pregnancy: Are female infants better protected against inflammation? Front Immunol. 2015;6. doi: 10.3389/fimmu.2015.00318. DOI: https://doi.org/10.3389/fimmu.2015.00318
Dutta S, Sengupta P, Liew FF. Cytokine landscapes of pregnancy: mapping gestational immune phases. Gynecol Obstet Clin Med. 2024;4(1):e000011. doi: 10.1136/gocm-2024-000011. DOI: https://doi.org/10.1136/gocm-2024-000011
He A, Wu H, Zou Y, Wan C, Zhao J, Zhang Q, et al. Can biomarkers identified from the uterine fluid transcriptome be used to establish a noninvasive endometrial receptivity prediction tool? A proof-of-concept study. Reprod Biol Endocrinol. 2023;21(1):20. doi: 10.1186/s12958-023-01070-0. DOI: https://doi.org/10.1186/s12958-023-01070-0
Yockey LJ, Iwasaki A. Interferons and proinflammatory cytokines in pregnancy and fetal development. Immunity. 2018;49(3):397–412. doi: 10.1016/j.immuni.2018.07.017. DOI: https://doi.org/10.1016/j.immuni.2018.07.017
Azizieh F, Yilmaz B, Raghupathy R. Artificial intelligence predicts pregnancy complications based on cytokine profiles. J Maternal-Fetal Neonat Med. 2025;38(1). doi: 10.1080/14767058.2025.2498549.
Pantos K, Grigoriadis S, Maziotis E, Pistola K, Xystra P, Pantou A, et al. The role of interleukins in recurrent implantation failure: A comprehensive review of the literature. Int J Mol Sci. 2022;23(4):2198. doi: 10.3390/ijms23042198. DOI: https://doi.org/10.3390/ijms23042198
Equils O, Kellogg C, McGregor J, Gravett M, Neal-Perry G, Gabay C. The role of the IL-1 system in pregnancy and the use of IL-1 system markers to identify women at risk for pregnancy complications. Biol Reprod. 2020;103(4):684–694. doi: 10.1093/biolre/ioaa102. DOI: https://doi.org/10.1093/biolre/ioaa102
Tsai TC, Wang YW, Lee MS, Wu WN, Hsu W, Yao DJ, et al. Detection of interleukin-1 β (IL-1β) in single human blastocyst-conditioned medium using ultrasensitive bead-based digital microfluidic chip and its relationship with embryonic implantation potential. Int J Mol Sci. 2024;25(7):4006. doi: 10.3390/ijms25074006. DOI: https://doi.org/10.3390/ijms25074006
Malinowski W. Can fetal heart rate in twin pregnancy in the first trimeter be useful as a marker of pregnancy prognosis. Ginekol Położnictwo Med Project. 2021;1(59):9-13.
Zhao Y, Zhang T, Guo X, Wong CK, Chen X, Chan YL, et al. Successful implantation is associated with a transient increase in serum pro-inflammatory cytokine profile followed by a switch to anti-inflammatory cytokine profile prior to confirmation of pregnancy. Fertil Steril. 2021;115(4):1044–1053. doi: 10.1016/j.fertnstert.2020.10.031. DOI: https://doi.org/10.1016/j.fertnstert.2020.10.031
Thair TN, Abdulsattar SA, Alkazzaz FF. Assessment of obesity, dyslipidemia, hyperglycemia, and pro-inflammatory cytokines as cardiovascular disease risk factors in acromegaly patients. Baghdad Sci J. 2022;19(5):0976. doi: 10.21123/bsj.2022.6002. DOI: https://doi.org/10.21123/bsj.2022.6002
Mishra S, Ashish A, Rai S, Sahni C, Tiwari S, Kumar B, et al. The impact of inflammatory cytokines on recurrent pregnancy loss: A preliminary investigation. Reprod Sci. 2025;32(3):804–414. doi: 10.1007/s43032-025-01786-x. DOI: https://doi.org/10.1007/s43032-025-01786-x
Tang C, Hu W. The role of Th17 and Treg cells in normal pregnancy and unexplained recurrent spontaneous abortion (URSA): New insights into immune mechanisms. Placenta. 2023;142:18–26. doi: 10.1016/j.placenta.2023.08.065. DOI: https://doi.org/10.1016/j.placenta.2023.08.065
Mukherjee N, Sharma R, Modi D. Immune alterations in recurrent implantation failure. Am J Reprod Immunol. 2023;89(2). doi: 10.1111/aji.13563. DOI: https://doi.org/10.1111/aji.13563
Zhang Q, Yang D, Han X, Ren Y, Fan Y, Zhang C, et al. Alarmins and their pivotal role in the pathogenesis of spontaneous abortion: insights for therapeutic intervention. Eur J Med Res. 2024;29(1):640. doi: 10.1186/s40001-024-02236-1. DOI: https://doi.org/10.1186/s40001-024-02236-1
Wen B, Liao H, Lin W, Li Z, Ma X, Xu Q, et al. The role of TGF-β during pregnancy and pregnancy complications. Int J Mol Sci. 2023;24(23):16882. doi: 10.3390/ijms242316882. DOI: https://doi.org/10.3390/ijms242316882
Ahmed M, Nafady A, Taha S, El-Din A, Ali A. Leukemia inhibitory factor a marker of implantation success in unexplained infertility: A randomized controlled trial. Clin Lab. 2022;68(12). doi: 10.7754/Clin.Lab.2022.211217. DOI: https://doi.org/10.7754/Clin.Lab.2022.211217
Khan MI, Khan MI, Wahab F. Irisin in reproduction: Its roles and therapeutic potential in male and female fertility disorders. Biomolecules. 2024;14(10):1222. doi: 10.3390/biom14101222. DOI: https://doi.org/10.3390/biom14101222
Al-Ogaidi SO, Abdulsattar SA, Al-Dulaimi HMJ. The impact of serum leptin, leptin receptor and insulin on maternal obesity. Res J Pharm Technol. 2019;12(7):3569. doi: 10.5958/0974-360X.2019.00609.7. DOI: https://doi.org/10.5958/0974-360X.2019.00609.7
Kabbani N, Blüher M, Stepan H, Stumvoll M, Ebert T, Tönjes A, et al. Adipokines in pregnancy: A systematic review of clinical data. Biomedicines. 2023;11(5):1419. doi: 10.3390/biomedicines11051419. DOI: https://doi.org/10.3390/biomedicines11051419
Roomi AB, Mahdi Salih AH, Noori SD, Nori W, Tariq S. Evaluation of bone mineral density, serum osteocalcin, and osteopontin levels in postmenopausal women with type 2 diabetes mellitus, with/without osteoporosis. J Osteoporos. 2022; 2022:1–5. doi: 10.1155/2022/1437061. DOI: https://doi.org/10.1155/2022/1437061
Szukiewicz D. Reproductive immunology and pregnancy 3.0. Int J Mol Sci. 2023;24(23):16606. doi: 10.3390/ijms23126485. DOI: https://doi.org/10.3390/ijms242316606
Li X, Li C, Yang J, Lin M, Zhou X, Su Z, et al. Associations of the levels of adipokines and cytokines in individual follicles with in vitro fertilization outcomes in women with different ovarian reserves. J Ovarian Res. 2025;18(1):11. doi: 10.1186/s13048-025-01594-6. DOI: https://doi.org/10.1186/s13048-025-01594-6
Chen P, Jia R, Liu Y, Cao M, Zhou L, Zhao Z. Progress of Adipokines in the Female Reproductive System: A Focus on Polycystic Ovary Syndrome. Front Endocrinol (Lausanne). 2022;13. doi: 10.3389/fendo.2022.881684. DOI: https://doi.org/10.3389/fendo.2022.881684
Pérez‐Pérez A, Toro A, Vilariño‐García T, Maymó J, Guadix P, Dueñas JL, et al. Leptin action in normal and pathological pregnancies. J Cell Mol Med. 2018;22(2):716–727. doi: 10.1111/jcmm.13369. DOI: https://doi.org/10.1111/jcmm.13369
Son JS, Zhao L, Chen Y, Chen K, Chae SA, de Avila JM, et al. Maternal exercise via exerkine apelin enhances brown adipogenesis and prevents metabolic dysfunction in offspring mice. Sci Adv. 2020;6(16). doi: 10.1126/sciadv.aaz0359. DOI: https://doi.org/10.1126/sciadv.aaz0359
Pheiffer C, Dias S, Jack B, Malaza N, Adam S. Adiponectin as a potential biomarker for pregnancy disorders. Int J Mol Sci. 2021;22(3):1326. doi: 10.3390/ijms22031326. DOI: https://doi.org/10.3390/ijms22031326
Al-Rawi HAG, Nori W, Salman DA, Issa AH, Akram W. The utility of maternal adiponectin and triglyceride-glycemic index for gestational diabetes mellitus screening: A cross-sectional study. Clin Exp Obstet Gynecol. 2024;51(12). doi: 10.31083/j.ceog5112262 DOI: https://doi.org/10.31083/j.ceog5112262
Wu AHB, Tsongalis GJ. Correlation of polymorphisms to coagulation and biochemical risk factors for cardiovascular diseases. Am J Cardiol. 2001;87(12):1361–1366. doi: 10.1016/s0002-9149(01)01553-3. DOI: https://doi.org/10.1016/S0002-9149(01)01553-3
Annie L, Pankaj PP, Kharwar RK, Singh A, Roy VK. Status of visfatin in female reproductive function under normal and pathological conditions: a mini review. Mol Biol Rep. 2024;51(1):631. doi: 10.1007/s11033-024-09461-1. DOI: https://doi.org/10.1007/s11033-024-09461-1
Ali AI, Nori W. Correlation of serum visfatin level in non-obese women with polycystic ovary syndrome and matched control. Reprod Sci. 2022;29(11):3285–3293. doi: 10.1007/s43032-022-00986-z. DOI: https://doi.org/10.1007/s43032-022-00986-z
Tan L, Lu X, Danser AHJ, Verdonk K. The role of chemerin in metabolic and cardiovascular disease: A literature review of its physiology and pathology from a nutritional perspective. Nutrients. 2023;15(13):2878. doi: 10.3390/nu15132878. DOI: https://doi.org/10.3390/nu15132878
Leandro A, Queiroz M, Azul L, Seiça R, Sena CM. Omentin: A novel therapeutic approach for the treatment of endothelial dysfunction in type 2 diabetes. Free Radic Biol Med. 2021; 162:233–242. doi: 10.1016/j.freeradbiomed.2020.10.021. DOI: https://doi.org/10.1016/j.freeradbiomed.2020.10.021
Chouzouris TM, Dovolou E, Dafopoulos K, Georgoulias P, Vasileiou NG, Fthenakis GC, et al. Ghrelin suppresses the GnRH-induced preovulatory gonadotropin surge in dairy heifers. Theriogenology. 2016;86(6):1615–1621. doi: 10.1016/j.theriogenology.2016.05.022. DOI: https://doi.org/10.1016/j.theriogenology.2016.05.022
Schalla MA, Stengel A. The role of the gastric hormones ghrelin and nesfatin-1 in reproduction. Int J Mol Sci. 2021;22(20):11059. doi: 10.3390/ijms222011059. DOI: https://doi.org/10.3390/ijms222011059
Li L, Baek KH. Exploring potential biomarkers in recurrent pregnancy loss: A literature review of Omics studies to molecular mechanisms. Int J Mol Sci. 2025;26(5):2263. doi: 10.3390/ijms26052263. DOI: https://doi.org/10.3390/ijms26052263
Nori W, Hamed RM, Roomi AB, Akram W. Alpha-1antitrypsin in pre-eclampsia; from a clinical perspective. J Pak Med Assoc. 2021;71(Suppl 8)(12):S53–56. PMID: 35130219.
Tan Q, Shi S, Liang J, Zhang X, Cao D, Wang Z. MicroRNAs in small extracellular vesicles indicate successful embryo implantation during early pregnancy. Cells. 2020;9(3):645. doi: 10.3390/cells9030645. DOI: https://doi.org/10.3390/cells9030645
Than NG, Posta M, Györffy D, Orosz L, Orosz G, Rossi SW, et al. Early pathways, biomarkers, and four distinct molecular subclasses of preeclampsia: The intersection of clinical, pathological, and high-dimensional biology studies. Placenta. 2022;125:10–19. doi: 10.1016/j.placenta.2022.03.009. DOI: https://doi.org/10.1016/j.placenta.2022.03.009
Ibarra A, Vega-Guedes B, Brito-Casillas Y, Wägner AM. Diabetes in pregnancy and microRNAs: Promises and limitations in their clinical application. Noncoding RNA. 2018;4(4):32. doi: 10.3390/ncrna4040032. DOI: https://doi.org/10.3390/ncrna4040032
Tsoutsouki J, Patel B, Comninos AN, Dhillo WS, Abbara A. Kisspeptin in the prediction of pregnancy complications. Front Endocrinol (Lausanne). 2022;13. doi: 10.3389/fendo.2022.942664. DOI: https://doi.org/10.3389/fendo.2022.942664
Volovsky M, Seifer DB. Current status of ovarian and endometrial biomarkers in predicting ART outcomes. J Clin Med. 2024;13(13):3739. doi: 10.3390/jcm13133739. DOI: https://doi.org/10.3390/jcm13133739
Kochhar P, Vukku M, Rajashekhar R, Mukhopadhyay A. microRNA signatures associated with fetal growth restriction: a systematic review. Eur J Clin Nutr. 2022;76(8):1088–1102. doi: 10.1038/s41430-021-01041-x DOI: https://doi.org/10.1038/s41430-021-01041-x
Muraoka A, Yokoi A, Yoshida K, Kitagawa M, Bayasula, Murakami M, et al. Serum-derived small extracellular vesicles as biomarkers for predicting pregnancy and delivery on assisted reproductive technology in patients with endometriosis. Front Endocrinol (Lausanne). 2025;15. doi: 10.3389/fendo.2024.1442684. DOI: https://doi.org/10.3389/fendo.2024.1442684
Hayder H, Shan Y, Chen Y, O’Brien JA, Peng C. Role of microRNAs in trophoblast invasion and spiral artery remodeling: Implications for preeclampsia. Front Cell Dev Biol. 2022:10:995462. doi: 10.3389/fcell.2022.995462. DOI: https://doi.org/10.3389/fcell.2022.995462
Omeljaniuk WJ, Laudański P, Miltyk W. The role of miRNA molecules in the miscarriage process. Biol Reprod. 2023;109(1):29–44. doi: 10.1093/biolre/ioad047. DOI: https://doi.org/10.1093/biolre/ioad047
Gaeckle NT, Stephenson L, Reilkoff RA. Alpha-1 antitrypsin deficiency and pregnancy. COPD: J Chronic Obstruct Pulmonary Dis. 2020;17(3):326–332. doi: 10.1080/15412555.2020.1754778. DOI: https://doi.org/10.1080/15412555.2020.1754778
Ali AI, Hassan WNM, Alrawi S. A copeptin as a predictor marker for insulin resistance among women with polycystic ovary syndrome. Curr Women Health Rev. 2022;18(4). doi: 10.2174/1573404817666211208152049. DOI: https://doi.org/10.2174/1573404817666211208152049
Hassan AA, Mohammed EA. The role of kisspeptin in discrimination between missed miscarriage and intrauterine viable pregnancy. Al-Rafidain J Med Sci. 2025;8(2):195–201. doi: 10.54133/ajms.v8i2.2012. DOI: https://doi.org/10.54133/ajms.v8i2.2012
Barbagallo F, Cannarella R, Garofalo V, Marino M, La Vignera S, Condorelli R, et al. The role of irisin throughout women’s life span. Biomedicines. 2023;11(12):3260. doi: 10.3390/biomedicines11123260. DOI: https://doi.org/10.3390/biomedicines11123260
Nori W. Beyond metabolism; fibroblast growth factor-21; A new frontier in women’s health and reproduction. Mustansiriya Med J. 2024. doi: 10.4103/mj.mj_38_24. DOI: https://doi.org/10.4103/mj.mj_38_24
Yuldurum S, Amin K. Evaluation of serum vascular endothelial growth factor in ectopic pregnancy. Kirkuk J Med Sci. 2022;10(2):85–103. doi: 10.32894/kjms.2022.136116.1034. DOI: https://doi.org/10.32894/kjms.2022.136116.1034
Lian X, Zhong Y, Zhou Y, Xia F, Sun R. Discussion on the evaluation of the therapeutic efficacy of uterine artery blood flow parameters and serum PLGF and sFlt-1 in patients with recurrent spontaneous abortion. Reprod Biol Endocrinol. 2024;22(1):119. doi: 10.1186/s12958-024-01289-5. DOI: https://doi.org/10.1186/s12958-024-01289-5
Sun FR, Chen CQ, Yu M, Wang SC, Li DJ, Du MR. Galectin-9 promotes human trophoblast cell invasion through matrix metalloproteinase-2 and p38 signaling pathway. Reprod Develop Med. 2018;2(1):1–7. doi: 10.3389/fcell.2021.645658. DOI: https://doi.org/10.4103/2096-2924.232880
Nori W, Helmi ZR. Can follicular fluid 8-oxo-2’-deoxyguanosine predict the clinical outcomes in ICSI cycle among couples with normospermia male? Obstet Gynecol Sci. 2023;66(5):430–440. doi: 10.5468/ogs.22170. DOI: https://doi.org/10.5468/ogs.22170
Tan H, Xu Y, Xu J, Wang F, Nie S, Yang M, et al. Association of increased heat shock protein 70 levels in the lymphocyte with high risk of adverse pregnancy outcomes in early pregnancy: a nested case-control study. Cell Stress Chaperones. 2007;12(3):230. doi: 10.1379/csc-266.1. DOI: https://doi.org/10.1379/CSC-266.1
Hassan H, Abdulhameed W, Mossa HAL. Uterine biophysical profile in IUI cycles in relevance to hyaluronic acid pessaries. Kirkuk J Med Sci. 2023;11(2):64–73. doi: 10.32894/kjms.2023.140223.1064. DOI: https://doi.org/10.32894/kjms.2023.140223.1064
Jarmund AH, Giskeødegård GF, Ryssdal M, Steinkjer B, Stokkeland LMT, Madssen TS, et al. Cytokine patterns in maternal serum from first trimester to term and beyond. Front Immunol. 2021;12. doi: 10.3389/fimmu.2021.752660. DOI: https://doi.org/10.3389/fimmu.2021.752660
Abdulhakeem ZR, Odda AH, Abdulsattar SA. Relationship of serum ghrelin, amylase and lipase with insulin level in type 2 diabetes mellitus patients. Med J Babylon. 2023;20(1):71–76. doi: 10.4103/MJBL.MJBL_255_22. DOI: https://doi.org/10.4103/MJBL.MJBL_255_22
Obeagu EI, Obeagu GU. Leukocyte dynamics in female reproductive health: roles and mechanisms. Ann Med Surg. 2025;87(6):3268–3278. doi: 10.1097/MS9.0000000000002926. DOI: https://doi.org/10.1097/MS9.0000000000002926
Al-Ogaidi SO, Abdulsattar SA, Al-Dulaimi HMJ. FTO rs17817449 gene polymorphism as a predictor for maternal obesity in Iraqi pregnant women. Indian J Public Health Res Dev. 2019;10(4):678. doi: 10.5958/0976-5506.2019.00780.0. DOI: https://doi.org/10.5958/0976-5506.2019.00780.0
Nagy S. Global players with local impact: Novel biomarkers for fertility. Thesis. University of Groningen; 2020. 186 p. doi: 10.33612/diss.132814240. DOI: https://doi.org/10.33612/diss.132814240
Gilyazova I, Asadullina D, Kagirova E, Sikka R, Mustafin A, Ivanova E, et al. MiRNA-146a—A key player in immunity and diseases. Int J Mol Sci. 2023;24(16):12767. doi: 10.3390/ijms241612767. DOI: https://doi.org/10.3390/ijms241612767
Mutia K, Wiweko B, Abinawanto A, Dwiranti A, Bowolaksono A. microRNAs as a biomarker to predict embryo quality assessment in in vitro fertilization. Int J Fertil Steril. 2023;17(2):85–91. doi: 10.22074/ijfs.2022.551571.1285.
Voros C, Varthaliti A, Athanasiou D, Mavrogianni D, Bananis K, Athanasiou A, et al. MicroRNA signatures in endometrial receptivity—Unlocking their role in embryo implantation and IVF success: A systematic review. Biomedicines. 2025;13(5):1189. doi: 10.3390/biomedicines13051189. DOI: https://doi.org/10.3390/biomedicines13051189
Qi S, Kodithuwakku SP, Pang RTK, Chiu PCN, Tang MHY, Lee KF. Role of microRNAs in embryo–endometrial interactions: biological functions and clinical applications. Reprod Develop Med. 2023;7(4):238–251. doi: 10.1097/RD9.0000000000000073. DOI: https://doi.org/10.1097/RD9.0000000000000073
Danieli MG, Brunetto S, Gammeri L, Palmeri D, Claudi I, Shoenfeld Y, et al. Machine learning application in autoimmune diseases: State of art and future prospectives. Autoimmun Rev. 2024;23(2):103496. doi: 10.1016/j.autrev.2023.103496. DOI: https://doi.org/10.1016/j.autrev.2023.103496
Azizieh F, Yilmaz B, Raghupathy R. Artificial intelligence predicts pregnancy complications based on cytokine profiles. J Maternal-Fetal Neonat Med. 2025;38(1). doi: 10.1080/14767058.2025.2498549. DOI: https://doi.org/10.1080/14767058.2025.2498549
Kakkar P, Gupta S, Paschopoulou KI, Paschopoulos I, Paschopoulos I, Siafaka V, et al. The integration of artificial intelligence in assisted reproduction: a comprehensive review. Front Reprod Health. 2025;7. doi: 10.3389/frph.2025.1520919. DOI: https://doi.org/10.3389/frph.2025.1520919
Spence T, Allsopp PJ, Yeates AJ, Mulhern MS, Strain JJ, McSorley EM. Maternal serum cytokine concentrations in healthy pregnancy and preeclampsia. J Pregnancy. 2021; 2021:1–33. doi: 10.1155/2021/6649608. DOI: https://doi.org/10.1155/2021/6649608
Zaheer A, Komel A, Abu Bakr MB, Singh AK, Saji AS, Kharal MM, et al. Potential for and challenges of menstrual blood as a non-invasive diagnostic specimen: current status and future directions. Ann Med Surg. 2024;86(8):4591–600. doi: 10.1097/MS9.0000000000002261. DOI: https://doi.org/10.1097/MS9.0000000000002261
Vona R, Pallotta L, Cappelletti M, Severi C, Matarrese P. The impact of oxidative stress in human pathology: Focus on gastrointestinal disorders. Antioxidants. 2021;10(2):201. doi: 10.3390/antiox10020201. DOI: https://doi.org/10.3390/antiox10020201
Ahmed N, Hussain D, Abdulsattar S. Impact of copper oxide and selenium nanoparticles on the activities of myeloperoxidase and gamma-glutamyl transferase related oxidative stress of myocardial infarction patients. Nano Biomed Eng. 2021;13(2). doi: 10.5101/nbe.v13i2.p165-171. DOI: https://doi.org/10.5101/nbe.v13i2.p165-171
Bester M, Joshi R, Mischi M, van Laar JOEH, Vullings R. Longitudinally tracking maternal autonomic modulation during normal pregnancy with comprehensive heart rate variability analyses. Front Physiol. 2022;13. doi: 10.3389/fphys.2022.874684. DOI: https://doi.org/10.3389/fphys.2022.874684
Rodrigo N, Glastras SJ. The emerging role of biomarkers in the diagnosis of gestational diabetes mellitus. J Clin Med. 2018;7(6):120. doi: 10.3390/jcm7060120. DOI: https://doi.org/10.3390/jcm7060120
Leprêtre M, Geffard A, Palos Ladeiro M, Dedourge-Geffard O, David E, Delahaut L, et al. Determination of biomarkers threshold values and illustration of their use for the diagnostic in large-scale freshwater biomonitoring surveys. Environ Sci Eur. 2022;34(1):115. doi: 10.1186/s12302-022-00692-2. DOI: https://doi.org/10.1186/s12302-022-00692-2
Samuel S, König-Ries B. Understanding experiments and research practices for reproducibility: an exploratory study. PeerJ. 2021;9:e11140. doi: 10.7717/peerj.11140. DOI: https://doi.org/10.7717/peerj.11140
Simkus A, Coolen-Maturi T, Coolen FPA, Bendtsen C. Statistical Perspectives on Reproducibility: Definitions and Challenges. J Stat Theory Pract. 2025;19(3):40. doi: 10.1007/s42519-025-00459-x. DOI: https://doi.org/10.1007/s42519-025-00459-x
Varthaliti A, Lygizos V, Fanaki M, Pergialiotis V, Papapanagiotou A, Pappa K, et al. The role of IL-6 and TNF-α as early biomarkers in the prediction and diagnosis of gestational diabetes mellitus. Biomedicines. 2025;13(7):1627. doi: 10.3390/biomedicines13071627. DOI: https://doi.org/10.3390/biomedicines13071627

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Al-Rafidain Journal of Medical Sciences ( ISSN 2789-3219 )

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Published by Al-Rafidain University College. This is an open access journal issued under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/).